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Boundary-layer receptivity in the leading-edge region of a cambered thin airfoil is
analysed for the case of a low-Mach-number flow. Acoustic free-stream disturbances
are considered. Asymptotic results based on large Reynolds number (U 2/ων � 1) are
presented, supplemented by numerical solutions. The influence of mean aerodynamic
loading enters the theory through a parameter µ, which provides a measure of the
flow speed variations in the leading-edge region, due to flow around the leading
edge from the lower surface to the upper. A Strouhal number based on airfoil nose
radius, S = ωrn/U , also enters the theory. The variation of the receptivity level as a
function of µ and S is analysed. Modest levels of aerodynamic loading are found to
decrease the receptivity level for the upper surface of the airfoil, while the receptivity
is increased for the lower surface. For larger angles of attack close to the critical
angle for boundary layer separation, a local rise in the receptivity occurs for the
upper surface, while on the lower surface the receptivity decreases. These effects
are more pronounced at larger values of S. While the Tollmien–Schlichting wave
does not emerge until a downstream distance of O((U 2/ων)1/3U/ω), the amplitude of
the Tollmien–Schlichting wave is influenced by the acoustic free-stream disturbances
only in a relatively small region near the leading edge, of length approximately
4U/ω. The numerical receptivity coefficients calculated, together with the asymptotic
eigenfunctions presented, provide all the necessary information for transition analysis
from the interaction of acoustic disturbances with leading-edge geometry.

1. Introduction
The transition of a boundary-layer flow from laminar to turbulent is strongly

influenced by free-stream disturbances. The process by which free-stream disturbances
generate instability waves in the boundary layer is known as receptivity (Morkovin
1969). Energy is transferred from long-wavelength disturbances in the free stream to
the much shorter wavelength Tollmien–Schlichting waves in the boundary layer. This
transfer requires a wavelength conversion mechanism, which is usually produced by
non-parallel mean flow effects due to short-scale streamwise variations in the mean
flow. These streamwise gradients may arise from viscous boundary-layer growth
associated with the leading-edge region (Goldstein 1983; Hammerton & Kerschen
1996, 1997), or from localized regions farther downstream in the boundary layer, such
as regions with sudden changes in surface geometry (Ruban 1984; Goldstein 1985;
Choudhari & Kerschen 1990) or marginally separated regions (Goldstein, Leib &
Cowley 1987). Additional background information on receptivity can be found in
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Goldstein & Hultgren (1989), Kerschen (1990), Kozlov & Ryzhov (1990) and Saric,
Reed & Kerschen (2002).

Leading-edge receptivity was first considered for the Blasius boundary layer on a flat
plate (Goldstein 1983). A high-Reynolds-number asymptotic analysis was formulated
for an incompressible two-dimensional flow of free-stream speed U , together with
a small-amplitude time-harmonic perturbation of frequency ω, equivalent to the
incompressible limit of an acoustic wave propagating parallel to the mean flow.
Two streamwise regions enter the analysis, one region of O(U/ω), where the inviscid
pressure field and slip velocity induced by the free-stream disturbance drives the
unsteady motion in the boundary layer, and a second region farther downstream
at distance O((νω/U 2)−1/3U/ω), where the disturbance is governed by the triple-
deck structure, corresponding to the high-Reynolds-number asymptotic form of the
Orr–Sommerfeld equation in the vicinity of the lower branch.

In the first region of Goldstein’s analysis where the streamwise length scale is
U/ω, the unsteady disturbance in the boundary layer is governed by the linearized
unsteady boundary layer equation (LUBLE). Far downstream in the LUBLE region,
the solution consists of a Stokes wave, and a set of asymptotic eigenfunctions that
contain velocity but not pressure fluctuations. These asymptotic eigenfunctions are
equivalent to those obtained by Lam & Rott (1960, 1993) and Ackerberg & Phillips
(1972). The asymptotic analysis for distances far downstream determines the form of
the eigenfunctions, but not their coefficients Ci .

The wavelengths of the asymptotic eigenfunctions shorten progressively with
distance downstream. Eventually, the self-induced pressure field associated with the
displacement thickness of each asymptotic eigenfunction becomes significant, and the
triple-deck structure replaces the LUBLE as the correct asymptotic approximation
to the Navier–Stokes equation. The first asymptotic eigenfunction of the LUBLE
matches onto the Tollmien–Schlichting (TS) wave solution of this triple-deck region.
Thus, the form of the free-stream disturbance and the geometry close to the nose
influence the amplitude of the TS wave only through the coefficient C1 of the first
asymptotic eigenfunction. For this reason, C1 is known as the ‘receptivity coefficient’.
The numerical value of the receptivity coefficient cannot be determined by asymptotic
methods. Instead it must be extracted from numerical solutions of the LUBLE, by
comparison with the asymptotic form far downstream in the LUBLE region. This
was accomplished for the flat-plate case by Goldstein, Sockol & Sanz (1983) and
Heinrich & Kerschen (1989).

The analysis of Goldstein for a flat plate was the first theoretical description of the
fundamental mechanisms of leading-edge receptivity. However, aerodynamic bodies
designed for subsonic flow generally have finite thickness distributions with a parabolic
leading edge. Hammerton & Kerschen (1996, 1997) considered a thin symmetric
airfoil at zero angle of attack, with a plane acoustic wave incident at arbitrary
angle, and examined the influence of the leading-edge geometry on receptivity. The
structure of the development of the instability remains similar to that for a flat-plate;
the asymptotic eigenfunctions of the LUBLE are modifications of the Lam–Rott
eigenfunctions, which take account of the effects of mean pressure gradient and
surface curvature. Attention was focused on the variation of the receptivity level with
the nose radius of the airfoil and the incidence angle θ of the acoustic field. The
nose radius rn of the airfoil enters the analysis as a Strouhal number, S = ωrn/U . The
receptivity decreases rapidly as S is increased, dropping to less than half the flat-plate
level when S = 0.3. For low Mach numbers, the receptivity to oblique acoustic waves
is much stronger than that for an acoustic wave propagating parallel to the airfoil
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chord. In wind tunnel tests, reflections of acoustic waves from the sidewalls can lead
to oblique impingment on the leading edge, increasing receptivity levels significantly
(see Kerschen 1990 and Saric & White 1998). Inclusion of the leading-edge thickness
effect goes some way towards modelling experimental investigations (Saric et al. 1995;
Saric & White 1998) and allowing comparisons with related numerical simulations
(Reed & Lyttle 1998; Haddad & Corke 1998; Erturk & Corke 2001).

In this paper, the receptivity for a cambered airfoil at an angle of attack to a mean
flow is considered in the high-Reynolds-number limit (ε6 = νω/U 2

e ; ε � 1). The physics
of the receptivity process for this realistic geometry is considerably more intricate
than that for previous studies of leading-edge receptivity. The previous studies were
restricted to symmetric mean flows, involving zero-pressure-gradient boundary layers
or favourable pressure gradients that decayed monotonically to zero with downstream
distance. In contrast, for the present geometry the favourable pressure gradient at the
stagnation point is followed by an even stronger favourable pressure gradient as the
flow travels around the leading edge. The pressure gradient on the upper surface then
becomes adverse and the boundary layer may tend toward separation, leading to a
minimum in the wall shear stress which is followed by a relatively slow recovery with
downstream distance as the adverse pressure gradient relaxes. Pressure gradients are
known to exert a strong influence on the development of instability waves, and it is
natural to anticipate equally strong effects on the leading-edge receptivity process.

In our analysis, attached boundary-layer flow is assumed so that the wall shear
stress is everywhere positive and finite. This assumption is consistent with aerodynamic
design for cruise conditions. At high angles of attack near the boundary of the aero-
dynamic envelope, some airfoils may develop a small region of ‘marginal separation’
just downstream of the leading edge, in which the wall shear stress nearly vanishes.
Although we consider situations involving adverse pressure gradients and small values
of wall shear stress, we do not approach the critical angle of attack corresponding to
marginal separation. Thus the marginal separation receptivity mechanism analysed
by Goldstein et al. (1987) is not relevant to the present study.

The structure of the paper is as follows. In § 2 a high-Reynolds-number asymptotic
analysis is formulated for an incompressible two-dimensional flow about a thin
cambered airfoil. In § 2.1, the steady slip velocity on the airfoil surface is determined
using thin-airfoil theory, followed in § 2.2 by the derivation of the equation governing
the unsteady boundary-layer flow in terms of suitable coordinates. Assuming that the
unsteady perturbations in the free stream are small, and letting ε → 0, the unsteady
disturbances in the boundary layer are governed by the LUBLE.

The solution in the LUBLE region is analysed in § 3. When considering the
subsequent development of instabilities in the boundary-layer flow, the asymptotic
form of the unsteady solution far downstream in the LUBLE region is required. The
derivation of the asymptotic form of both the steady and unsteady components of the
solution is a necessary part of the presentation, but mathematical details are given in
the Appendices instead of the body of the paper in order to avoid interrupting the
description of the evolution of the boundary-layer disturbance.

In § 4, results are presented for the inviscid pressure field and slip velocity produced
by the interaction of a free-stream acoustic wave with an airfoil. The unsteady slip
velocity in the vicinity of the leading edge depends on the incidence angle of the
acoustic wave in a way that is fundamentally different for small and large values of
the reduced acoustic frequency k =ωb/c, where b is the airfoil semi-chord and c is the
speed of sound. In § 5, numerical solutions of the steady boundary layer equation and
the LUBLE are obtained, and compared with the asymptotic eigenfunctions of § 3.
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Figure 1. An illustration of the physical situation of interest: a thin cambered airfoil of chord
2b is at angle α̂ to a uniform flow of speed U∞, with a plane acoustic wave incident at an
angle θ .

This allows determination of the receptivity coefficient as a function of leading-edge
geometry, airfoil shape and angle of attack, and the characteristics of the free-stream
acoustic wave.

2. Formulation
We consider a thin cambered airfoil of chord 2b at an angle of attack α̂ to a uniform

flow of speed U∞. A plane acoustic wave of frequency ω, propagating at an angle θ ,
is assumed to be incident on the airfoil as illustrated in figure 1. Two-dimensional
low-Mach-number flow is considered. Since the Mach number is small, the mean flow
can be analysed using incompressible theory. For the unsteady component of the
flow, most features of interest can also be analysed using incompressible theory. The
influence of compressibility on the unsteady component of the flow is discussed in § 4.
Since the Reynolds number is assumed large, the flow field is inviscid and irrotational
everywhere except in the vicinity of the airfoil surface. The behaviour of the flow in
the boundary layer adjacent to the airfoil surface depends crucially on the pressure
gradient imposed by the outer inviscid flow. Therefore, relevant features of the inviscid
mean flow are presented in § 2.1. The equations governing the boundary-layer flow
are formulated in § 2.2.

2.1. Inviscid mean flow

We introduce Cartesian coordinates (x, y) normalized by the airfoil semi-chord b,
with the origin located at the airfoil leading edge and the x- and y-coordinate axes
parallel and normal to the airfoil chord line at the leading edge, as illustrated in
figure 1. This particular choice of coordinate system proves convenient for the present
analysis, in which attention is focused on the leading-edge region. The camber and
thickness of the airfoil are assumed of O(δ) where δ � 1. Explicitly factoring out the
scaling parameter δ, the airfoil surface is defined by

y = δ(−n(x) ± s(x)), 0 � x � 2, (2.1)

where the ± sign applies on the upper and lower surface, respectively, and the camber
and thickness functions n(x) and s(x) are defined in figure 1. The angle of attack α̂,
measured with respect to the axes defined above, is also assumed to be small (to avoid
separation) and to be comparable to the thickness and camber; hence we write α̂ = δα.
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The inviscid mean flow past the airfoil can then be calculated using thin-airfoil theory.
Specifically, the no-penetration boundary condition on the upper and lower surfaces
of the airfoil can be linearized and transferred to y = 0±, respectively. The mean-flow
perturbation due to the presence of the airfoil is found to have the y-components

U∞δ(−α + n′(x) ± s ′(x)) on 0 � x � 2, y = 0±, (2.2)

where n′(x) and s ′(x) denote the derivatives of these functions with respect to x.
The mean slip velocity on the airfoil surface, Us , immediately follows (Cheng & Rott
1954),

Us(x)

U∞
= 1 − δ

π

(∫ 2

0

s ′(x1)

x1 − x
dx1 +

[
2 − x

x

]1/2 ∫ 2

0

[
x1

2 − x1

]1/2
n′(x1) − α

x1 − x
dx1

)
+O(δ2).

(2.3)

A circulatory component has been included in (2.3), its magnitude fixed by the Kutta
condition at the trailing edge.

The thin-airfoil expansion (2.3) becomes non-uniform in the vicinity of the leading
edge, and must be supplemented by a local expansion. For an airfoil with a parabolic
leading edge of (dimensional) radius rn, the small-argument expansions of the camber
and thickness distribution have the form

n(x) = O(x2), s(x) = s1x
1/2[1 + O(x)], (2.4)

where s1 = (2rn/δ
2b)1/2. Following the approach of Hammerton & Kerschen (1996,

henceforth denoted HK1), parabolic coordinates scaled on the airfoil nose radius rn

are introduced,

x + iy =
1

2

rn

b
[(ξ̄ + iη̄)2 + 1]. (2.5)

At leading order in the local coordinates, the airfoil surface is defined by the parabola
η̄ =1. The inviscid flow in the vicinity of the parabolic nose can be obtained in the
form of a complex potential by means of conformal mappings, giving a slip velocity

Us(ξ̄ ) = Ue

(
ξ̄

(ξ̄ 2 + 1)1/2
+ µ

1

(ξ̄ 2 + 1)1/2

)
. (2.6)

The first term of (2.6) corresponds to symmetric flow past the nose, while the second
term is an antisymmetric flow around the nose, from the lower surface to the upper,
when the parameter µ is positive. The parameters Ue and µ in (2.6) are determined
by matching with the thin-airfoil expression (2.3). Comparing the small-x behaviour
of (2.3) and the large-ξ̄ behaviour of (2.6), we obtain

Ue

U∞
= 1 +

δ

π

(
s1√
2

−
∫ 2

0

[
ds

dx1

− s1

2x
1/2
1

]
dx1

x1

)
, (2.7)

µ =
2δb1/2

r
1/2
n

(
α − 1

π

∫ 2

0

n′(x)

[x1(2 − x1)]1/2
dx1

)
. (2.8)

The effective free-stream speed near the leading edge, Ue, is influenced by the full
thickness distribution of the airfoil. The aerodynamic loading parameter for the
leading-edge region, µ, depends on the airfoil nose radius and semi-chord, as well as
the angle of attack and the full camber distribution of the airfoil. Since rn = O(δ2b),
µ is O(1). From (2.6), the stagnation point on the lower surface is given by ξ̄ = −µ.
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2.2. Boundary-layer flow

The boundary-layer flow in the vicinity of the leading edge is also analysed most
conveniently in parabolic coordinates. For the mean boundary layer, the nose radius
rn remains the appropriate length scale in the streamwise direction. However, for the
unsteady flow, a second streamwise length scale, Ue/ω, is also relevant. Specifically,
Goldstein’s (1983) analysis of leading-edge receptivity for the flat-plate boundary
layer showed that the receptivity process takes place in a region where the distance
from the leading edge is O(Ue/ω). To examine the boundary-layer flow in this region,
we introduce new coordinates,

ξ = S1/2ξ̄ , η = ε−3S1/2(η̄ − 1), (2.9)

where

S =
ωrn

Ue

, ε =

(
νω

U 2
e

)1/6

. (2.10)

The parameter S is a Strouhal number based on the airfoil nose radius, while ε6

is the reciprocal of the Reynolds number based on the disturbance length scale
Ue/ω. The analysis presented here considers the small-ε limit but with S = O(1).
Note that ε−3S1/2 = (Uern/ν)1/2, so that η is the normal coordinate of conventional
boundary-layer theory.

The non-dimensional vorticity equation, expressed in terms of the streamfunction
Ψ (which has been normalized by ε3U 2

e /ω), then becomes

Ψηηt +
∂(Ψηη/H

2, Ψ )

∂(ξ, η)
− Ψηηηη

H 2
= ε6

(
Ψηηξξ

H 2
+

[
Ψηη

H 2

]
ξξ

− ∂(Ψξξ/H
2, Ψ )

∂(ξ, η)
− Ψξξt

)

+ ε12

[
Ψξξ

H 2

]
ξξ

, (2.11)

where H =(ξ 2 + S)1/2 and the time t has been non-dimensionalized by 1/ω. Equation
(2.11) is exact except for approximation of the metric coefficient by H (see HK1). The
viscous flow satisfies the no-slip boundary conditions on the body surface,

Ψ = Ψη = 0 on η = 0, (2.12)

while at the outer edge of the boundary layer, the viscous flow matches to the inviscid
slip velocity (non-dimensionalized by Ue),

H −1Ψη → Ũs(ξ, t) as η → ∞, (2.13)

where Ũs(ξ, t) contains both the steady and unsteady components of the slip velocity,
see (3.4).

For O(1) values of ξ , the terms on the right-hand side of (2.11) can be neglected,
leading to the unsteady boundary-layer equation. The unsteady component of the flow,
a small perturbation to the mean flow, then satisfies the linearized unsteady boundary-
layer equation (LUBLE). It is shown in § 3 that the solution of the LUBLE contains
components whose wavelengths progressively shorten with distance downstream.
Thus, for the unsteady component of the flow, terms on the right-hand side of (2.11)
become significant when ξ = O(ε−1), and the correct asymptotic approximation to
(2.11) then takes on the triple-deck structure. The asymptotic matching of these two
streamwise regions is discussed briefly at the end of § 3.
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3. Analysis of receptivity region
In this section, we consider the region of the boundary layer where the receptivity

takes place. Since the streamwise length scale for this region is Ue/ω, the boundary
layer is governed by the form of (2.11) corresponding to the limit ε → 0, ξ =O(1).
Subsequently, the behaviour of this solution at large values of ξ will be considered,
in anticipation of matching with the Orr–Sommerfeld region that exists farther
downstream. For ξ = O(1) and ε → 0, the terms on the right-hand side of (2.11) can
be ignored. Integrating once with respect to η then gives the unsteady boundary-layer
equation,

H 2Ψηt + (ΨηΨξη − ΨηηΨξ ) − ξH −2Ψη
2 − Ψηηη = −H 2Pξ , (3.1)

where the pressure gradient Pξ (ξ, t) is obtained by matching to the outer (inviscid)
flow,

Pξ (ξ, t) = −H
∂Ũs

∂t
− Ũs

∂Ũs

∂ξ
. (3.2)

Up to this point our analysis has paralleled that of HK1, utilizing nearly the
same notation. For the symmetric mean flow case considered in HK1, the unsteady
boundary-layer region was analysed using the streamwise coordinate ξ (which is based
on the length scale Ue/ω). This allowed easy comparison with the flat-plate analysis
of Goldstein (1983). However, for the non-zero angle of attack case considered here,
no corresponding flat-plate analysis is possible because the boundary layer would
separate at the leading edge. In addition, the presence of airfoil thickness, camber and
angle of attack significantly complicates the algebra. The analysis of the mean flow
is most naturally carried out in terms of a streamwise coordinate based on the nose
radius rn. Noting the parabolic nature of the governing equations, one can see that
the mean-flow stagnation point is the natural origin for the streamwise coordinate.
Thus we introduce the new streamwise coordinate,

w = ξ̄ + µ = S−1/2ξ + µ, (3.3)

where µ is the angle-of-attack parameter defined in (2.8). The mean-flow stagnation
point is now given by w = 0, the nose corresponds to w = µ, and w is scaled on the
nose radius rn rather than the disturbance length scale Ue/ω.

Because the mean flow is expressed most simply in terms of the streamwise
coordinate w, it turns out that w is also the most convenient coordinate for analysis of
the unsteady flow. Our analysis assumes S = O(1), so that w = O(1) also corresponds
to ξ = O(1). Later in this section we analyse the behaviour of the solution for large
ξ , in order to examine the development of the Lam–Rott asymptotic eigenfunctions
ψi , and the eventual evolution of the first eigenfunction ψ1 into the TS wave when
ξ = O(1/ε). This large-ξ analysis will be presented in terms of large w for algebraic
simplicity, but we emphasize that it is the quantity S1/2w which is required to be large.

For a cambered airfoil at non-zero angle of attack, the slip velocity is given in
terms of the new coordinate w by

Ũs(w, t) =
w

h
+ � us(w)e−it , (3.4)

where h2 = 1 + (w − µ)2. Here the steady contribution Us =w/h follows from (2.6),
while the time-dependent component us(w) depends on the particular form of
the free-stream disturbance, as discussed in § 4. Since we are concerned only with
small-amplitude free-stream disturbances, that is � � 1, the steady and unsteady
components of the flow field can be analysed separately. Thus, the streamfunction
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within the boundary layer can be written in the corresponding form

Ψ (w, η) = S1/2wφ(w, η) + � ψ(w, η)e−it , (3.5)

where the factor S1/2w has been extracted from the mean component of the
streamfunction in order to simplify the matching condition as η → ∞. The steady
boundary-layer flow then satisfies

φηηη + φηηφ + w(φηηφw − φηφηw) − β
(
φ2

η − 1
)

= 0, (3.6)

where the pressure gradient parameter β(w; µ) is given by

β =
1 − µw + µ2

h2
, (3.7)

together with boundary conditions

φ = φη = 0 at η = 0 and φη → 1 as η → ∞. (3.8)

The time-dependent component of the boundary-layer flow satisfies the linearized
unsteady boundary-layer equation (LUBLE),

F(ψ) = S1/2h2 dp

dw
,

F(ψ) ≡ ψηηη + (φ + wφw)ψηη +

(
iSh2 +

w2 − µ2 − 1

h2
φη − wφηw

)
ψη

+ w(φηηψw − φηψηw),

dp

dw
=

(
iSh − 1 − µ(w − µ)

h3

)
us − w

h

dus

dw
,


(3.9)

with boundary conditions

ψ = ψη = 0 at η = 0 and ψη → S1/2hus as η → ∞. (3.10)

These equations must be solved numerically for each value of S and µ, and for
each different free-stream disturbance, although various simplifications arise as will
be seen later. The numerical solutions are described in § 5. However, as discussed in
§ 1, we are primarily interested in the solution of these equations in the large-ξ (or
large-w) limit, where a component of the solution to the LUBLE matches onto the
TS wave solution of the Orr–Sommerfeld equation. In the next two subsections, we
develop large-w asymptotic expansions for φ(w, η) and ψ(w, η).

3.1. Large-w expansion of the steady boundary-layer equation

In order to determine the form of the asymptotic eigenfunction of the LUBLE that
matches onto the TS wave far downstream, the large-w expansion of the mean flow
is required. The large-w expansion of the pressure gradient parameter is

β ∼ − µ

w
+

(1 − µ2)

w2
+

µ(3 − µ2)

w3
+ O

(
1

w4

)
. (3.11)

The expansion of β must be carried out up to O(w−3) in order to determine the
exponential and O(1) algebraic dependence of the asymptotic eigenfunction of the
LUBLE, as is shown in Appendix B. For µ > 0, an adverse pressure gradient arises
on the upper surface (w > 0). This adverse pressure gradient decays to zero much
more slowly than the favourable pressure gradient arising in the symmetric-mean-flow
case (µ = 0).
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Guided by the µ = 0 case (Van Dyke 1964), we find that the asymptotic expansion
of the mean flow far downstream is given by

φ(w, η) ∼ F (η) +
p1(η)

w
+

p2(η) log w2

w2
+

p3(η)

w2
+

p4(η) log w2

w3
+

p5(η)

w3
+ O

(
1

wγ2

)
,

(3.12)

where the fractional power γ2 = 3.774 arises as an eigensolution (Libby & Fox 1963).
Here F (η) is the Blasius solution and the pi(η) are determined in Appendix A.
Note that the parameter µ appears in the pi . As for the symmetric-mean-flow case
described in HK1, the large-w asymptotic form (3.12) of the mean flow is not fully
determined by the local conditions far downstream (see Appendix A). The functions
p3(η) and p5(η) contain a coefficient B1(µ) that must be determined by comparing
the asymptotic form (3.12) with a numerical solution obtained by integrating (3.6)
from the stagnation point w = 0.

The behaviour of the mean flow close to the wall is required in the analysis for the
asymptotic eigenfunction of the LUBLE. This is given by (Appendix A)

φ ∼ η2U ′
0(w)

2
+

η3U ′′
0 (w)

6
− η5F ′′

0
2

5!
+ O

(
η2

wγ2
,
η5

w

)
, (3.13)

where U ′
0(w) and U ′′

0 (w) = − β(w) are the wall shear stress and the profile curvature
at the wall, given by the asymptotic expansions (A 7) and (3.11) respectively, accurate
to O(w−3). We also have F ′′

0 = F ′′(0).

3.2. Large-S1/2w expansion of the linearized unsteady boundary-layer equation

We next consider the evolution of the unsteady component of the flow, which is
governed by (3.9). As in the symmetric-mean-flow case considered in HK1, far
downstream in the LUBLE region (S1/2w � 1) the unsteady component of the flow
consists of a particular solution, ψp , determined entirely by the local conditions far
downstream, together with a set of asymptotic eigenfunctions,

ψ(w, η; S, µ) = ψp(w, η; S, µ) +
∑

i

Ci(S, µ)ψi(w, η; S, µ). (3.14)

The particular solution is a generalization of the classical Stokes layer solution,
driven by the local value of the unsteady pressure gradient (3.9). The asymptotic
eigenfunctions ψi are generalizations of the Lam–Rott eigenfunctions (Lam & Rott
1960, 1993; Ackerberg & Phillips 1972), taking account of the non-Blasius mean flow.
(A second set of asymptotic eigenfunctions for the LUBLE were derived by Brown &
Stewartson (1973), but their relationship to TS wave development has not been
established.)

The eigenfunctions are ‘asymptotic’ because they exist only for S1/2w � 1, where
the mean flow takes on a slowly varying character. The ψi depend on the mean-
flow characteristics far downstream, but are independent of the unsteady free-
stream disturbance in the downstream region. The coefficients Ci of the asymptotic
eigenfunctions are determined by the characteristics of the unsteady free-stream
disturbance and the mean boundary-layer flow in the region nearer the leading edge
where S1/2w = O(1). One of the asymptotic eigenfunctions, which we label ψ1, matches
onto the growing TS wave in the Orr–Sommerfeld region farther downstream, where
S1/2w = O(1/ε). It is only through the receptivity coefficient C1 that the unsteady
free-stream disturbance influences the amplitude of the TS wave. In the remainder
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of this paper, most attention is focused on this particular eigenfunction and on its
coefficient C1.

The form of the general asymptotic eigenfunction ψi is obtained in Appendix B.
The asymptotic eigenfunctions have a two-layer structure (Ackerberg & Phillips 1972),
with a new inner layer of width η = O(S−1/2w−1). The leading-order expression for
the general eigenfunction ψi is given by

ψ
(0)
i =


F ′′

0

(
Sw2

2

)τi

exp
(
T

(0)
i (w)

)
hi(n), n = S1/2wη = O(1),

S1/2w

(
Sw2

2

)τi

exp
(
T

(0)
i (w)

)
F ′(η), η = O(1),

(3.15)

where τi and T
(0)
i (w) are given by (B 20) and (B 21) respectively, and

hi(n) =

∫ n

0

(n − ñ)Ai
(
eiπ/4ρ

−1/2
i ñ − ρi

)
dñ∫ ∞

0

Ai
(
eiπ/4ρ

−1/2
i ñ − ρi

)
dñ

(3.16)

which is obtained from (B 24) using M = n[1 + O(w−1)]. Here ρi is the ith root
of Ai′(−ρ) = 0. The leading term of T

(0)
i (w) is proportional to (i − 1)w3, so that

the asymptotic eigenfunctions exhibit exponential decay and a gradually shortening
wavelength as they propagate downstream.

In the next section, numerical solutions for the LUBLE are compared to the
asymptotic eigenfunction ψ1 in order to extract values of the receptivity coefficient
C1. The two most convenient points of comparison are the unsteady component of the
wall shear, ψηη(η = 0), and the unsteady component of the boundary-layer thickness
which is related to the value of the streamfunction far from the wall, ψ(η → ∞). For
the first eigensolution,

ψ ′′
1 (η = 0) ∼ 0.4356(1 + i)

(
Sw2

2

)τ1+1

exp
(
T

(0)
1 (w)

)
[1 + O(w−γ2+3)], (3.17)

ψ1(η → ∞) ∼ S1/2w

(
Sw2

2

)τ1

exp
(
T

(0)
1 (w)

)
[1 + O(w−γ2+3)], (3.18)

with T
(0)
1 (w) given by (B 21) with ρ = ρ1 and

τ1 = −0.6921 + 1.9878(1 − 6.182µ2)Si. (3.19)

The exponent for the first neglected term in (3.17) and (3.18) is −γ2 +3 = −0.774. This
term is followed by a sequence of closely spaced correction terms of O(w−1 ln2 w),
O(w−1 lnw) and O(w−1), as can be seen from the analysis presented in Appendix B.

Before proceeding to numerical solutions of (3.9), we first consider the validity of
the LUBLE. While the eigenfunctions obtained here are uniformly valid solutions for
the LUBLE as S1/2w → ∞, they are not uniformly valid solutions of the full equations
governing the development of the viscous flow at large distances downstream. The
wavelengths of the eigenfunctions decrease with distance downstream, increasing the
importance of terms involving streamwise derivatives. When S1/2w =O(ε−1), terms
on the right-hand side of (2.11), which were neglected in forming the LUBLE, now
become significant. An irrotational layer outside the mean boundary layer, driven by
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the oscillating displacement thickness of the eigenfunction, must then be considered,
and the pressure gradient imposed by the motion in this outer layer appears in
the leading-order equations governing the wall layer. This coupled viscous–inviscid
interaction has the triple-deck structure, corresponding to the small-ε asymptotic
approximation to the Orr–Sommerfeld equation in the vicinity of the lower branch. A
complete treatment of the linear development of the instability wave would require an
asymptotic solution for the TS wave of the Orr–Sommerfeld equation, taking account
of the mean pressure-gradient distribution on the airfoil. However, for O(1) values
of S, with ε and δ small quantities of the same order, the Orr–Sommerfeld region
is influenced by the full airfoil camber and thickness distributions, necessitating a
general development that does not seem justified in the present context.

In this paper we restrict ourselves to examining only the receptivity process, and
the remainder of the paper is concerned with determining the receptivity coefficient
C1 as a function of the nose radius parameter S, the aerodynamic loading parameter
µ, and the characteristics of the free-stream disturbance. This is accomplished by
comparing numerical solutions with the asymptotic solutions obtained above.

4. Free-stream disturbances
In order to calculate the unsteady flow in the boundary layer, the inviscid flow field

which drives the unsteady motion in the boundary layer must be determined. In this
section we consider the inviscid flow field produced by the interaction of a free-stream
acoustic wave with the airfoil. The acoustic wave is assumed to be incident on the
airfoil at an angle θ with respect to the airfoil chord, as illustrated in figure 1. The slip
velocity and surface pressure fields generated by this interaction drive the unsteady
motion in the boundary layer, leading to the generation of a TS wave. Since the outer
inviscid flow is irrotational, the unsteady pressure field is easily related to the unsteady
velocity field. Thus, we present results for the unsteady slip velocity in the leading-edge
region.

For a low-Mach-number flow, the acoustic wavelength 2πc/ω is long compared to
the hydrodynamic length scale Ue/ω. Thus, outside the boundary layer, the unsteady
flow in the vicinity of the leading edge is incompressible and irrotational. Potential
flow theory then shows that this local flow has the form

us(w) = κs(θ)
w − µ

h
+ κa(θ)

1

S1/2h
(4.1)

where h2 = 1 + (w − µ)2 as before. The functions multiplying κs and κa are O(1)
in the region of receptivity (S1/2w = O(1)). Noting that w − µ = ξ̄ , the parabolic
coordinate with origin at the leading edge defined by (2.5), it is seen that (w − µ)/h

and 1/h correspond to purely symmetric and antisymmetric flow about the leading
edge, respectively. The two components of (4.1) exhibit quite different behaviour. The
symmetric component is zero at the nose (w = µ), and approaches one for large w.
In contrast, the antisymmetric component has its maximum value at the nose, and
approaches zero at large w. The coefficients κs and κa multiplying these eigenfunctions
are independent of the nose geometry, but depend on the free-stream disturbance,
being determined by global features of the unsteady flow.

The nature of the unsteady interaction of the acoustic wave with the airfoil depends
upon the magnitude of the acoustic reduced frequency k = ωb/c, where c is the speed
of sound in the undisturbed medium. For k � 1, the acoustic wavelength is long
compared to the airfoil chord and classical unsteady airfoil theory for incompressible
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flow gives (see HK1)

κs = cos θ, κa = (ωb/Ue)
1/2 sin θ. (4.2)

The reduced frequency S = ωrn/Ue has been assumed O(1), so that ωb/Ue � 1. For
k � 1, the acoustic wavelength is short compared to the airfoil chord and we obtain
the quite different behaviour (HK1)

κs = cos θ, κa = 2e−iπ/4 (πMe)
−1/2 sin 1

2
θ, (4.3)

where Me =Ue/c is the Mach number of the mean flow, which has been assumed
small. Thus, for both k � 1 and k � 1, κa is much larger than κs except when the
acoustic wave incidence angle θ is small.

By writing ψ = κsψs + κaψa , and substituting into (3.9), the receptivity coefficient is
given by

C1 = κs(θ) Cs(S, µ) + κa(θ) Ca(S, µ), (4.4)

where Cs and Ca are extracted from the solutions of

F(ψs) = S1/2

(
iSh2(w − µ) +

µ − 2w + µ(w − µ)2

h2

)
,

F(ψa) = iSh2 − 1 + µ2 − w2

h2
,

 (4.5)

respectively, with F defined in (3.9). Here Cs is a measure of the receptivity due to
that component of the free-stream disturbance which leads to symmetric flow in the
vicinity of the leading edge, and Ca is a measure of the receptivity arising from that
component of the free-stream disturbance which leads to antisymmetric flow about
the leading edge.

5. Numerical results
In § 3, generalizations of the Lam–Rott asymptotic eigenfunctions were obtained,

taking account of the pressure gradient due to leading-edge thickness and mean
aerodynamic loading. The asymptotic analysis determines the form of these eigen-
functions, but not their coefficients Ci . The coefficients are determined by the
characteristics of the free-stream disturbance in the LUBLE region, ξ = O(1). The
first of these eigenfunctions is the precursor of the TS wave. Thus, the free-stream
disturbances influence the amplitude of the TS wave only through the coefficient C1.
It appears that the receptivity coefficient C1 for a particular free-stream disturbance
can be determined only by numerically solving the LUBLE over the full range of ξ

and examining the behaviour for large ξ .
Numerical solutions are required for both the mean flow, governed by the nonlinear

partial differential equation (3.6), and the linearized disturbance, governed by the
LUBLE (3.9). For convenience, the numerical solutions are computed in terms of
the variable w rather than ξ (see (3.3)). Since the governing equations are parabolic,
the solutions were computed by marching away from the mean flow stagnation point
(w = 0) using a Keller Box scheme (Keller & Cebeci 1970). The initial conditions at
w = 0 correspond to the steady Hiemenz flow and its quasi-steady linear perturbation.

5.1. Mean flow

The development of the mean flow in the leading-edge region is controlled by the mean
pressure-gradient parameter β , given by (3.7). In figure 2, β is plotted as a function of
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Figure 2. Streamwise variation of the mean pressure gradient parameter, β(w),
for µ= 0, 0.5, 1.0.

w for three values of the aerodynamic loading parameter, µ. For µ = 0, the pressure
gradient is everywhere favourable, falling off monotonically away from its stagnation
point value (β = 1) and approaching zero as w−2 far downstream. The behaviour
for negative w (the lower surface) is identical to that for positive w, for µ = 0.
When aerodynamic loading is introduced, the magnitude of the favourable pressure
gradient along the upper surface is increased in the region from the stagnation point
(w =0) to the nose (w = µ). The pressure-gradient parameter then falls rapidly to
zero at w = µ + µ−1, and the pressure gradient is adverse for all locations farther
downstream. Compared to the favourable pressure gradient for µ =0, the adverse
pressure gradient on the upper surface for µ > 0 decays to zero much more slowly
with downstream distance, becoming proportional to w−1 far downstream. In contrast
to the complicated behaviour of the pressure gradient on the upper surface in the
presence of aerodynamic loading, the pressure gradient on the lower surface (w < 0)
remains everywhere favourable. However, when µ is non-zero the pressure gradient
on the lower surface decays only as |w|−1 for large distances, and the magnitude of
the pressure gradient increases with µ, except for a small region near the leading edge
(−1 < w < 0).

As the aerodynamic loading parameter is increased, the position of the minimum
wall shear stress on the upper surface moves towards the nose (figure 3a), and
the magnitude of the minimum wall shear decreases (figure 3b). For steady two-
dimensional flows, zero wall shear corresponds to boundary-layer separation. From
Ruban (1982) and Stewartson, Smith & Kaups (1982), the minimum wall shear close
to the critical angle of attack is given by

φηη(wm, 0) ∝ (µc − µ)1/2.

Fitting this behaviour to the curve in figure 3(b) suggests that separation occurs
at µc ≈ 1.15. More accurate determination of separation criteria would require a
modified numerical scheme, since the current method breaks down near the onset of
flow reversal.
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Figure 3. Effect of aerodynamic loading parameter on the wall shear stress: (a) position of
minimum wall shear, wm; (b) magnitude of minimum wall shear, φηη(wm, 0).

The coefficient B1(µ), which appears in the functions p3(η) and p5(η) arising in the
large-w asymptotic form of the mean flow (3.12), is undetermined by the asymptotic
analysis. The value of B1 is related to the ‘virtual origin’ of the boundary layer. This
can be seen from (A 6), by noting that the function ηF ′ − F which B1 multiplies in p3

corresponds to the first eigensolution of Libby & Fox (1963). Their first eigensolution
is the streamwise derivative of the streamfunction for the Blasius boundary layer. The
value B1(0) relates to a shift of virtual origin due to the favourable pressure gradient
on the nose of the parabola in the absence of aerodynamic loading; the dependence
on µ relates to an additional shift of the virtual origin in the presence of aerodynamic
loading.

To determine B1(µ), the wall shear U ′
0(w) = φηη(w, 0) predicted by the asymptotic

expansion (A 7) is compared with the wall shear obtained by numerical solution of
(3.6), for each value of µ considered. In fact it proves necessary to modify (3.6) and
solve for φ(w, η) − F (η) in order to obtain the required accuracy when extrapolating
for B1 in the large-w limit. In figure 4, it is seen that B1(0) ≈ 2.08 and that B1(µ)
increases approximately linearly with µ over the range −0.4 < µ < 0.7. The maximum
value of B1(µ) occurs at µ ≈ 0.9; B1(µ) decreases slightly for larger values of µ.

5.2. Unsteady flow

The value of the receptivity coefficient C1(S, µ), for a particular free-stream
disturbance, is obtained by comparing numerical solutions of the LUBLE to the
asymptotic forms (3.17) and (3.18).

For typical values of the camber distribution and angle of attack, the mean
aerodynamic loading parameter µ is positive. We examine the influence of mean
aerodynamic loading on the receptivity for both surfaces of the airfoil. However,
rather than considering the cases w > 0 (upper surface) and w < 0 (lower surface)



Leading-edge receptivity for bodies with mean aerodynamic loading 15

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1.0
–1

0

1

2

3

4

5

6

7

µ

B1(µ)

Figure 4. Computed values of B1(µ), the coefficient appearing in the expansion of the base
flow far downstream (A7).

separately, the results can be presented more concisely by considering w to be positive
and taking µ > 0 to give upper surface results and µ < 0 for lower surface results.

The method used to obtain numerical values for Cs and Ca is described in HK1.
For real w, the real part of T

(0)
i (w) is negative. Thus, the asymptotic eigenfunctions

(3.15) decay exponentially with downstream distance, while the particular solution
ψp remains O(1). In addition, the eigenfunctions are inverse ordered, so that the
function ψ1 whose coefficient is desired decays exponentially faster than all the
other eigenfunctions. To circumvent these difficulties, the streamwise integration is
extended into the complex plane in order to make the first asymptotic eigenfunction
dominant. Choosing −5π/12 < arg(w) < −π/12, the first eigenfunction becomes
exponentially large compared to the other components of the unsteady boundary
layer solution for |S1/2w| � 1. However, the pressure gradient parameter β , defined
by (3.7), has first-order poles at w = µ ± i. Thus for larger values of µ, arg(w)
must be chosen with care in order to avoid an integration path which passes close
to the singularity at w = µ − i. For all values of µ considered, integration was
performed for arg(w) = −0.1π and arg(w) = −0.15π; for smaller values of µ, results
for arg(w) = −0.2π and arg(w) = −0.25π were also obtained. For these choices of
arg(w), the solution ψ grows exponentially with |w|.

To avoid difficulties associated with the rapid exponential growth of ψ as a

function of |w|, in our numerical scheme we solve for ψ̂ = ψ exp(−T
(0)
1 ) rather than

ψ . This allows the numerical solution to be continued much farther downstream
while retaining accuracy (Heinrich & Kerschen 1989). Using the wall shear (3.17) as
the basis for comparison, we define

C(µ, S, w) =
ψ̂ ′′

Num(η = 0)

ψ̂ ′′
0

, (5.1)

where ψ̂ ′′
0 = 0.4356(1 + i)(Sw2/2)τ1+1. Since the argument of w was chosen so that

the first asymptotic eigenfunction dominates other components of the solution when
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w � 1, ψ̂ ∼ C1ψ1 exp(−T
(0)
1 ) and hence

C ∼ C1

[
1 + c1

1

w0.774
+ c2

ln2 w

w
+ c3

lnw

w
+ c4

1

w
+ . . .

]
for w � 1. (5.2)

The value of C1(µ, S) is then obtained by extrapolation, though this is complicated
by the presence of four closely spaced terms.

The development of the unsteady disturbance along a ray in the complex w-
plane contains two phases, both of which must be calculated accurately in order to
determine values of the receptivity coefficient. First, over a relatively short distance,
the asymptotic eigenfunction ψ1 grows exponentially relative to the other components
of the solution and becomes the dominant component. In our computations, this stage
is typically completed when S1/2w ≈ 3. (This is seen by plotting C(µ, S, w), defined
in (5.1), as a function of |w|.) Second, over a much longer distance the asymptotic
eigenfunction evolves algebraically toward its large-w form (3.15). The approach of ψ1

to its large-w form is much slower for larger values of µ, due to the long downstream
distance required for the mean boundary layer to recover from the region of low wall
shear induced by the strong adverse pressure gradient. Computations were typically
carried out to distances S1/2w ≈ 15–20, except for larger values of µ when it was
necessary to extend the computations farther downstream.

For the larger values of µ and S considered, a small error in the computed value
of B1 leads to a large error in C(µ, S, w) for w � 1, and hence limits the accuracy of
the extrapolated value of C1. In the analysis of HK1 for a symmetric airfoil in the
absence of aerodynamic loading (µ = 0), arg w = −0.25π was used throughout. With
this particular choice, any error in the extrapolated value of |C1| due to inaccuracy in
the numerically determined value of B1 is eliminated. Clearly this advantage is lost
in the present study. However, C1 should be independent of the value of arg w used
in the numerical integration. By using two different values of arg w in the present
analysis, any significant error due to inaccurate determination of B1 should be readily
identifiable. Unfortunately, for the larger values of µ and S considered, there is still
uncertainty in the numerical value of C1 obtained by extrapolation. For µ = 0.9, the
error may be as large as 25%.

5.3. Receptivity coefficients

In figure 5, the moduli of the receptivity coefficients are plotted as a function of
the mean loading parameter µ, for values which correspond to the upper surface
(µ > 0). The coefficients |Cs | and |Ca| for free-stream disturbances symmetric and
antisymmetric about the nose of the body, respectively, are plotted in figures 5(a)
and 5(b). Results are presented for two Strouhal numbers, S = 0.1 and S = 0.3.
The overall patterns of the variation with the aerodynamic loading parameter µ

are qualitatively similar for |Cs | and |Ca|. However, the receptivity coefficient for
antisymmetric forcing is larger than that for symmetric forcing, by approximately a
factor of two (note the different scales in figures 5a and 5b). As the aerodynamic
loading parameter is increased from zero, the receptivity level on the upper surface
(µ > 0) decreases; |Cs | reaches a minimum at µ ≈ 0.7, while |Ca| reaches a minimum
at µ ≈ 0.4. Beyond these minima the receptivity coefficients |Cs | and |Ca| increase
with µ, reaching local maxima in the vicinity of µ ≈ 0.9. The quantitative accuracy of
the numerical results for values of µ beyond 0.9 is uncertain, for the reasons discussed
earlier.

The variations in both |Cs | and |Ca| as a function of µ are much larger for
S = 0.3 than for S = 0.1. For S =0.3, the receptivity levels on the upper surface drop
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Figure 5. Variation of the magnitude of the receptivity coefficient on the upper surface of the
body as a function of the aerodynamic loading parameter µ, for two Strouhal numbers, S = 0.1
(solid line) and 0.3 (dashed line). (a) Receptivity to the free-stream disturbance component
symmetric about the nose, |Cs |; (b) receptivity to the free-stream disturbance component
antisymmetric about the nose, |Ca |.

significantly for modest values of aerodynamic loading. Both |Cs | and |Ca| are less
than 0.02 in the region 0.2 < µ < 0.6. (It is not possible to provide precise values
in this region, because the errors that arise in extrapolation are absolute rather than
relative.) The subsequent rise in receptivity level near µ ≈ 0.9 is particularly striking
for the case of antisymmetric forcing with S = 0.3, where the local value of |Ca|
exceeds 4.

The presence of aerodynamic loading adds significant complexity to the deve-
lopment of the unsteady flow, especially on the upper surface where the boundary
layer first experiences a rapid acceleration, followed by a rapid deceleration and then a
slow recovery. Thus it is difficult to provide a simple explanation for the dependence of
the receptivity coefficient on the aerodynamic loading parameter. For the symmetric-
mean-flow case (µ = 0) considered in HK1, the mean pressure gradient is everywhere
favourable, monotonically decreasing from its maximum value at the stagnation
point to zero far downstream as seen in figure 2. An increase of the leading-edge nose
radius (or Strouhal number) was found to decrease the receptivity coefficient. As a
speculative explanation of this behaviour, it was suggested that a favourable pressure
gradient in the region where the receptivity occurs tends to reduce the receptivity level.
At larger values of S, the region ξ =O(1) where the receptivity occurs is concentrated
closer to the airfoil nose, in the region of higher favourable pressure gradient. Hence,
the decrease in receptivity for increasing S found in HK1 is consistent with this
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explanation. However, the rise in receptivity level in the vicinity of µ ≈ 0.9 is not
explained by this simple explanation. Referring back to the streamwise variation in
mean wall shear in figure 3, we see that this value of mean loading corresponds
to the minimum wall shear becoming small. We now consider the possibility that
the region of low wall shear contributes to the total receptivity on the upper
surface.

As discussed in § 1, receptivity comes about through the interaction of free-stream
disturbances with regions of the boundary layer that contain short-scale streamwise
gradients. In the leading-edge mechanism, the receptivity is concentrated in a region of
length O(Ue/ω) extending downstream from the mean-flow stagnation point. However,
for values of µ approaching the critical value for the onset of separation, µc ≈ 1.15,
additional short-scale streamwise variations develop in the mean flow in the vicinity
of the location of minimum wall shear, w =wm. From figure 3, it is seen that wm ≈ 5
for values of µ � 0.8. The corresponding distance from the mean-flow stagnation
point is lm ≈ 9rn, so that ωlm/Ue ≈ 9S. Thus, for low values of S, the minimum
wall shear point lies within the leading-edge receptivity region, and the receptivity
which occurs in the vicinity of wm can be calculated by the present method, while at
higher values of S the minimum wall shear point lies downstream of the leading-edge
receptivity region.

Applying the marginal separation receptivity analysis of Goldstein et al. (1987)
to the present problem requires that µc − µ = O(ε14/5) and S = O(ε−1). The scaling
of µ leads to an interactive viscous–inviscid structure for the mean flow in the
vicinity of wm, but with a local streamwise scale of O(ε2) as compared to the
O(ε3) scale of standard triple-deck theory. This leads to additional complexity for
the marginal separation receptivity analysis, compared to the localized receptivity
analysis of Goldstein (1985) in which the variations in surface geometry and the
TS wavelength both have the standard triple-deck scale. Specifically, in Goldstein’s
marginal separation analysis, the instability waves in the marginal separation region
are interactive but their wavelength is shorter than the local scale for the mean flow.
This leads to an exponentially small initial amplitude for the instability wave. However,
the wave undergoes exponential amplification in the marginal separation region and
somewhat downstream, so that the marginal separation receptivity mechanism could
be important in some applications.

Our analysis assumes a high Reynolds number (ε � 1) with µc − µ = O(1), so
that the mean flow remains non-interactive in the region of low wall shear. Thus, we
cannot make direct comparisons with the analysis of Goldstein et al. (1987). However,
as discussed above, at sufficiently low Strouhal numbers the region of low wall shear
is contained within the leading-edge receptivity region, which is treated by our theory.
In this case, we can investigate the relative importance of the receptivity in the region
of low wall shear, compared to the receptivity near the mean-flow stagnation point.
The streamwise distribution of the receptivity process, for a range of values of µ and
S, is examined in the following subsection. However, for completeness, results for the
receptivity on the lower surface of the airfoil are first given.

The receptivity on the lower surface of the airfoil is illustrated in figure 6. On the
lower surface (µ < 0), the receptivity coefficients |Cs | and |Ca| increase as aerodynamic
loading is introduced, to global maxima in the vicinity of µ ≈ −0.4. The receptivity
coefficients then decrease toward zero as µ approaches −1. For negative µ, the value
of the receptivity coefficient can be extracted from the computational results with a
good degree of accuracy, since the pressure gradient is everywhere favourable and
decays monotonically to zero, with no region of low wall shear.
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Figure 6. Variation of the magnitude of the receptivity coefficient on the lower surface of
the body for S =0.1 (solid line) and 0.3 (dashed line) due to the free-stream disturbance
component (a) symmetric about the nose; (b) antisymmetric about the nose.

The large values found for |Cs | and |Ca| in the vicinity µ ≈ −0.4 imply that the
instability wave on the lower surface of the airfoil has a larger ‘initial’ amplitude
for this value of aerodynamic loading. The transition point, however, is determined
by both the receptivity coefficient and the stability characteristics. On the lower
surface, the high receptivity coefficient is counteracted by the increased stability due
to the favourable pressure gradient (see figure 2). Note also that the instability
wave amplitude depends linearly on the receptivity coefficient, while it depends
exponentially on the instability wave growth rate. Thus, despite the larger receptivity
coefficient on the lower surface, the transition point on the lower surface in the
presence of aerodynamic loading is typically farther downstream than that on the
upper surface.

The objective of a receptivity analysis is to provide the ‘initial amplitude’ which
is required in order to compute the subsequent downstream development of the
instability wave, and possibly the eventual transition of the boundary layer. For
S1/2w � 1, the first asymptotic eigenfunction ψ1 of the LUBLE evolves to the initial
form of the TS wave of the Orr–Sommerfeld equation. Thus, the initial amplitude of
the TS wave is determined by C1 exp(T (0)

1 (w)), where T
(0)
1 (w) is given by the asymptotic

analysis and numerical values of C1 are given in figures 5 and 6. This information
is sufficient to provide upstream boundary conditions for stability codes in order to
investigate the position of transition. However in order to understand the process
of receptivity further, it is still instructive to consider the relative importance of the
streamwise regions which contribute to the total receptivity.
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5.4. Streamwise distribution of the receptivity process

The development of the unsteady field involves a number of processes. First, there
is a transfer of energy from the free-stream disturbance to the viscous motion in
the boundary layer, through the action of the unsteady slip velocity and pressure
gradient imposed by the free-stream disturbance. Second, there is a ‘filtering’ process
within the boundary layer, which determines the coefficients Ci of the generalized
Lam–Rott asymptotic eigenfunctions, ψi . Third, there is a phase in the development
of the unsteady flow in which a strong disparity develops in the relative magnitudes
of the asymptotic eigenfunctions, due to their differing exponential decay (or growth)
rates. Fourth, there is an algebraic evolution of ψi to its far downstream form.

The question then arises of the extent to which these various processes or phases
are distinct. We believe that there is no sensible way to separate the first and second
processes – in our view the ‘leading-edge receptivity process’ is a combination of
the transfer of energy from the free-stream disturbance and its filtering within the
boundary layer to determine the coefficient C1. The asymptotic theory shows that
this process takes place in the LUBLE region where ωl/Ue = O(1), where l is the
dimensional distance along the airfoil measured from the stagnation point.

In contrast to the first two processes, which cannot be separated, the third and
fourth processes are distinct phases in the streamwise development of the unsteady
flow. The third process, in which ψ1 becomes the dominant eigenfunction (when the
computation is carried out along a ray in the complex w-plane), occurs over a relatively
modest downstream distance extending out to, say S1/2w ≈ 3 (ωl/Ue ≈ 4), as could
be predicted by noting that the relative magnitudes of the first two eigenfunctions,
ψ1 and ψ2, are given by exp(T (w)) where ρ is replaced by ρ1 and ρ2, respectively (see
Appendix B).

The fourth process, of algebraic evolution to the final downstream form for large
S1/2w, extends over a much larger downstream distance. For the case µ =0 where
the favourable pressure gradient decays as w−2, the fourth process extends out to
distances of the order of ωl/Ue ≈ 20. For non-zero values of aerodynamic loading,
the pressure gradient decays as w−1 and the fourth process extends even farther
downstream. For larger values of µ, the adverse pressure gradient on the upper
surface leads to an extended region of low wall shear stress and the recovery of the
mean boundary layer to Blasius form is extremely slow. The algebraic evolution of the
Lam–Rott eigenfunction to its final downstream form cannot precede the recovery of
the mean boundary layer, so that in this case the fourth process in the evolution of
the unsteady field extends very far downstream, say to ωl/Ue ≈ 100 for µ ≈ 0.9. The
large downstream distance required for the unsteady motion to evolve algebraically to
the asymptotic eigenfunction ψ1, combined with rapid exponential growth (or decay)
throughout this region, makes it quite difficult to obtain highly accurate numerical
results in this region of parameter space.

The third and fourth processes both take place in the far downstream asymptotic
limit of the LUBLE region, 1 � ωl/Ue � ε−2. In this downstream region, the
asymptotic eigenfunctions are decoupled from the local values of the free-stream
disturbance, so that the ‘receptivity process’ (as defined earlier) has been completed.

Focusing on the region of receptivity (ωl/Ue =O(1)), it is interesting to examine
quantitatively the extent of the region in which a significant transfer of energy
from the free-stream disturbance to the asymptotic eigenfunction ψ1 takes place. In
addressing this question, we take advantage of the fact that the equation governing
the unsteady component of the flow is linear. Hence, we can consider the receptivity
coefficient C1 (or Cs and Ca) as arising from a superposition of the contributions
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from the free-stream disturbance at various values of w. By removing the free-
stream disturbance input at downstream locations and examining the influence on the
receptivity coefficient, we can determine the relative importance of the receptivity
at these downstream locations. Note that here we are focusing on the relative
receptivity for different free-stream disturbance functions, and this can be calculated
very accurately even when µ is large. Essentially, the calculations need only be carried
out to the stage where the first asymptotic eigenfunction becomes (exponentially)
dominant, since the subsequent algebraic evolution of ψ1 to its far downstream form
is independent of the free-stream disturbance in this downstream region.

To investigate the relative contribution of different downstream regions to the total
receptivity, we consider a modified slip velocity

ûs(w) = us(w)Φ(w, w0), (5.3)

where

Φ(w, w0) =
1 − tanh(ζ )

1 − tanh(ζ0)
, ζ =

w − w0

δw

, ζ0 = −w0

δw

, (5.4)

is a smooth transition function that removes the contribution from the free-stream
disturbance at downstream locations. The modified slip velocity is the same as the
physical slip velocity for small values of w, then decreases smoothly and monotonically
to zero in the vicinity of w =w0. The transition occurs over a w-scale of δw . The
corresponding unsteady pressure gradient is then given by

dp̂

dw
= Φ

dp

dw
− wus

h

∂Φ

∂w
, (5.5)

and we extract the modified receptivity coefficients Ĉs(µ, S, w0, δw) and

Ĉa(µ, S, w0, δw) from the solutions of

F(ψ̂s) = S1/2

{
Φ

(
iSh2(w − µ) +

µ − 2w + µ(w − µ)2

h2

)
− Φww(w − µ)

}
,

F(ψ̂a) = Φ

(
iSh2 − 1 + µ2 − w2

h2

)
− Φww,

 (5.6)

respectively. By varying w0, the relative contribution of different streamwise regions to
the total receptivity can be determined. However, the introduction of a new artificial
streamwise scale (i.e. δw) clearly provides another possible source of receptivity.
Thus care must be taken in choosing δw: small enough that the different regions
of receptivity can be differentiated, but not so small that the receptivity associated
with the rapid change in unsteady slip velocity dominates other contributions to the
receptivity. Moreover, Φ is singular when w = w0 − 1

2
πδwi. Hence our choice of δw is

restricted by the condition δw > 2w0 tan[arg(w)]/π, which ensures that the integration
contour does not pass through any such singularity.

To examine the contributions to the receptivity on the upper surface when the body
is close to the critical angle of attack, we consider the ratio

Γ (µ, S, w0, δw) =
Ĉ(µ, S, w0, δw)

C(µ, S)
(5.7)

for δw = 3.0 and for various values of µ. By definition, Γ → 1 as w0 → ∞. Considering
Γ as a function of w0, the point at which Γ approaches 1 gives the downstream point
at which all coupling between the free-stream disturbance and the instability wave
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Figure 7. Plot of |Γ | illustrating the relative receptivity as a function of the streamwise
location of the filter based on body geometry, w0, for µ= 0, 0.5 and 0.9 for the component of
the disturbance symmetric about the nose (a, c, e) and for the component of the disturbance
antisymmetric about the nose (b, d, f ). Solid lines mark the results for S =0.1, and dashed
lines mark the results for S =0.3.

has ceased. In the following discussion we will refer to this as the point at which
receptivity is complete.

In figure 7, results for |Γ | are plotted as a function of the filter switch-off point w0,
for two Strouhal numbers S = 0.1 and 0.3. The value of |Γ | is seen to approach 1
as w0 increases, indicating the completion of the receptivity process. The receptivity
region would be expected to be concentrated closer to the mean flow stagnation point
at the higher frequency S = 0.3, and this behaviour is indeed seen in the plot of |Γs |.
Upon closer inspection, a similar trend can be seen in the plot of |Γa|.

A possible mechanism explaining the rise in receptivity coefficient for µ ≈ 0.9 is
the appearance of a region of low wall shear as discussed earlier in § 5.3. However,
for µ = 0.9, the point of minimum wall shear occurs at w =4.67. For S = 0.3, the
results in figure 7 show that the receptivity process has been completed by the time
the region of low wall shear is reached. Thus, these results indicate that the dramatic
increases in |Cs | and |Ca| near µ ≈ 0.9 in figure 5 are not due to receptivity in the
region of low wall shear. A further observation, which relates to the lack of receptivity
in the region of low wall shear for S = 0.3, is that the increase in |Ca| near µ ≈ 0.9 is
much larger than the increase in |Cs |, even though the amplitude of the antisymmetric
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component of the slip velocity (4.1) at w = 4.67 is only about a quarter of the value
for the symmetric component of the slip velocity.

For S = 0.1, |Γs | does not approach the value of 1 until w0 is approximately 7. Thus,
in this case the region of low wall shear appears to make some contribution to the
total receptivity. This is not unexpected, since the region of receptivity (ωl/Ue = O(1))
extends farther downstream by a factor of 3 for the case S =0.1, as compared to the
case S = 0.3. Note also that |Γa| approaches the value of 1 at a smaller value of w0 than
that for |Γs |. This may be explained by the different behaviour of the symmetric and
antisymmetric components of the slip velocity as a function of downstream distance,
as noted at the end of the preceding paragraph. However, although the receptivity
to the symmetric free-stream disturbance extends out through the region of low wall
shear for the case S = 0.1, there is no indication in figure 7(a) of a concentration of
receptivity in the region of low wall shear. It is also interesting to note that |Γs | is not
a monotonically increasing function of w0. This feature indicates that, at least for |Γs |,
receptivity close to the leading edge is partially cancelled by receptivity at positions
somewhat farther downstream. We should note that some caution is necessary in
evaluating the results for S = 0.1, since in that case the wavelength of the unsteady
motion is longer and the results could have been influenced more by the finite value
of the filter width δw .

The results presented in figure 7 show that the receptivity region extends farther
downstream at lower values of the Strouhal number. In order to examine the extent to
which it is possible to scale this feature out of the results, in figure 8 we plot |Γs | and
|Γa| as a function of S1/2w0, a streamwise coordinate scaled on the receptivity-region
length scale Ue/ω. Results are presented for two values of the Strouhal number, S = 0.1
and 0.3. The case µ =0 is shown in figure 8(a, b) for symmetric and antisymmetric
forcing respectively. Here, plotting the results in terms of a variable scaled by the
receptivity length scale has produced an excellent collapse of the results for the two
values of S. In figure 8(c, d) for the case µ = 0.5, the collapse is not quite as impressive,
with the curve for S = 0.3 extending out to a slightly larger value of S1/2w0 before
approaching the value of 1. This trend which appeared in figure 8(c, d) is magnified
further in figure 8(e, f ), where results for µ = 0.9 are presented. However, in all cases
the leading-edge receptivity process is completed by the time a downstream distance
of S1/2w0 = 3 is reached.

A number of factors may contribute to the lack of collapse in figure 8(e, f ), where
µ = 0.9. First, as µ is increased, the similarity behaviour for the mean boundary
layer as a function of S is progressively lost. Second, the strong acceleration of
the flow between the stagnation point and the nose of the airfoil may introduce
a significant shift in the ‘virtual origin’ of the boundary layer, which could affect
the streamwise development of the receptivity process. Thus, it seems unlikely that
a collapse of the results for different frequencies could be achieved for cases with
significant aerodynamic loading.

Similar calculations were performed for µ = −0.4 and −0.8. The results for
|Γ | indicate that the receptivity on the lower surface is also concentrated in the
region S1/2w0 < 3. The calculations did not produce any features which provide an
explanation for the high receptivity levels in the vicinity of µ = −0.4. However, as
noted earlier, the numerical value of the receptivity coefficient on the lower surface is
of less physical importance due to the increased stability of the boundary layer.

Returning to the question of the importance and role of the region of low wall
shear at larger values of µ, further insight can be gained by comparing the length
scale of the mean boundary layer flow to the wavelength of the first eigensolution.
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Figure 8. Plot of |Γ | illustrating the relative receptivity as a function of the streamwise

location of the filter,
√

Sw0, based on the receptivity length scale: (a, c, e) symmetric, (b, d, f )
antisymmetric; (a, b) µ= 0, (c, d) µ= 0.5, (e, f ) µ= 0.9.

We write these expressions in terms of the streamwise distance from the stagnation
point, non-dimensionalized by the nose radius rn, which in our notation is given by

s = ŝ(ξ̄ ) + ŝ(µ), ŝ(ξ̄ ) =
1

2

[
ξ̄ (1 + ξ̄ 2)1/2 + log

(
ξ̄ + (1 + ξ̄ 2)1/2

)]
for a parabolic body. A reasonable choice for the streamwise length scale of the mean
boundary layer is

L(s) =
τ̄

dτ̄ /ds
, τ̄ =

wφηη(w, 0)

1 + (w − µ)2
,

where τ̄ is the unscaled steady wall shear, and the wavelength of the generalized
Lam–Rott eigensolution (with respect to s) is given by

λLR(s) =
2π

Im (dT/ds)
.

Due to the non-dimensionalization, L(s) is independent of Strouhal number S, while
λLR(s) does depend on S. The value of λLR(s) is obtained from (B 4), where the
numerical rather than asymptotic value of U ′

0(w) is used. The quantities L(s) and
λLR(s) are plotted in figure 9 for the case µ =0.9 and for S = 0.1 and S = 0.3. For
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Figure 9. Comparison of the length scale of the development of the mean boundary layer
L(s) with the wavelength of the first eigensolution λLR(s) for µ = 0.9 and Strouhal numbers
S = 0.1 and S = 0.3. The point of minimum wall shear, s = 9.4 is also marked.

this value of µ, the position of minimum wall shear occurs at s ≈ 9.4. Note that
L(s) increases monotonically with s. There is no indication of shorter-scale behaviour
near the point of minimum wall shear, showing that µ =0.9 is quite far from the
marginal separation regime. We would expect the receptivity to be concentrated in
the region where L(s) is less than the wavelength λLR(s) of the unsteady disturbance.
From figure 9, it is clear that for S = 0.3 the region of receptivity is located upstream
of the region of low wall shear. For the case S =0.1, there may be some contribution
from the region of low wall shear, but there is no reason to believe that there is a
concentration of receptivity in this region. Thus, figure 9 provides further evidence
that the region of low wall shear does not make an important contribution to the
transfer of energy from the free-stream disturbance to the precursor of the instability
wave, for the conditions considered here.

6. Conclusions
The results presented in the previous section lead to a number of general

conclusions. It is clear that modest levels of aerodynamic loading in the leading-
edge region cause a decrease in the receptivity level for the boundary layer on the
upper surface of the airfoil, and an increase in receptivity for the lower surface.
The effects are more pronounced at higher values of the Strouhal number, where
the region of receptivity is concentrated nearer the stagnation point. Thus, it seems
reasonable to suppose that the effects are related to the behaviour of the mean-flow
pressure gradient near the nose of the airfoil. For the upper surface, the introduction
of aerodynamic loading leads to a movement of the stagnation point toward the
lower surface, and an increased favourable pressure gradient in the region between
the stagnation point (w = 0) and the leading edge (w =µ). The decrease in receptivity
level associated with these effects is consistent with the results obtained in HK1
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for the case µ = 0. The decrease in receptivity level on the upper surface in the
presence of modest aerodynamic loading is of significance for applications such as
laminar flow design. The subsequent rise in receptivity for larger values of µ also has
important practical implications. For the lower surface, an argument that the increase
in receptivity with modest aerodynamic loading is related to the pressure gradient
near the stagnation point appears more tenuous, since the changes in the pressure
gradient near the stagnation point are not pronounced. However, from a practical
standpoint, receptivity levels for the lower surface are usually of less interest, since
the pressure gradient on the lower surface is typically favourable and the instability
waves have much smaller growth rates.

It must also be kept in mind that, for leading-edge receptivity, quantities such
as the instability wave amplitude at the neutral stability point depend crucially on
a combination of receptivity and stability properties. Furthermore, the instability
wave depends linearly on the receptivity coefficient, while it depends exponentially
on the instability growth rate. There can be a subtle interplay between these, since a
small change in growth/decay rate can counteract a significant change in receptivity
level. In fact, for the leading-edge receptivity mechanism, even the issue of the
most appropriate definition of receptivity level is not straightforward. Experimental
and computational researchers often favour a definition based on the lower branch
amplitude. This is certainly of practical utility and has advantages with respect to
measurements, but it does not distinguish between the receptivity and stability aspects
of the disturbance development. The definition we have adopted has the advantage
of separating the receptivity aspects from stability considerations, but of course the
results must be combined with a stability calculation in order to predict amplitudes
in the Orr–Sommerfeld region farther downstream.

This work was supported by NASA Langley Research Center under grant NAG-
1-1135 and Air Force Office of Scientific Research under grant F49620-94-1-0206.

Appendix A. Asymptotic form of base flow far downstream
The functions pi(η) in (3.12) are determined by

Li(pi) = di, (A 1)

where

L1(p) ≡ p′′′ + Fp′′ + F ′p′,

L2(p) ≡ L3(p) ≡ p′′′ + Fp′′ + 2F ′p′ − F ′′p,

L4(p) ≡ L5(p) ≡ p′′′ + Fp′′ + 3F ′p′ − 2F ′′p,

 (A 2)

and

d1 = µ[1 − F ′2],

d2 = 0,

d3 = [F ′2 − 1 − 2(p2F
′′ − p′

2F
′)] − µ2

[
F ′2 − 1 + 2F ′p′

1 + p′
1
2
]
,

d4 = µ[p′′
1p2 − 3p′

1p
′
2 − 2F ′p′

2],

d5 = µ[p′′
1p3 − 3p′

1p
′
3 − 2F ′p′

3 + 2(F ′p′
4 − F ′′p4) + 2(p′

1p
′
2 − p′′

1p2) + 2F ′p′
1

− 3(1 − F ′2)] − µ3
[
F ′2 − 1 + 2F ′p′

1 + p′
1
2
]
.


(A 3)

These equations must be solved subject to the boundary conditions pi(0) = p′
i(0) = 0,

and the matching condition p′
i → 0 exponentially as η → ∞. The latter condition
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is necessary to ensure that vorticity decays exponentially at the outer edge of the
boundary layer.

The function p1(η) is the response of the mean boundary-layer profile to the O(w−1)
term of the mean pressure gradient (3.11). An exact solution for p1(η) can be obtained
in terms of the Blasius function F (η); since the expression is cumbersome and only
the wall shear stress p′′

1 (0) appears in our final results, p1(η) is not presented here.
The second term in the mean pressure gradient is proportional to w−2. However,

if the series (3.12) for φ were assumed to proceed only in inverse powers of w, the
solution that would be obtained for the O(w−2) term would not exhibit exponential
decay of vorticity at the outer edge of the boundary layer. Exponential decay of
vorticity is restored by including a term of O(w−2 log w2) in (3.12), as discussed by
Van Dyke (1964) for the symmetric flow case (µ = 0).

The equation governing p2(η) is homogeneous but admits an eigensolution,
p2 = A1(ηF ′ − F ). The coefficient A1 is then determined by a secularity condition
on the differential equation L3(p3) = d3 governing the O(w−2) term. Multiplying both
sides of this equation by F and integrating, after some manipulation we obtain

(1 − µ2)

{
log

(
γ

F ′′
0

)
− 1

4

}
+ A1 − µ2

∫ ∞

0

F
(
2F ′p′

1 + p′
1
2)

dη = 0, (A 4)

where F ′′
0 ≡ F ′′(0) = 0.4696 and γ = 0.33054, a constant appearing in the large-η

asymptotic form of F (η). Thus, setting A1 = A1 + µ2Ã1, the numerical values of these
constants are found to be

A1 = 0.60115, Ã1 = −2.1656. (A 5)

Next consider the solution for p3(η). The operator L3 is identical to L2, so that
p3(η) also contains an eigensolution B1(ηF ′ − F ). However, in this case the function
w−2(ηF ′ − F ) is an eigensolution of the partial-differential perturbation equation (in
fact, it is the first eigensolution of Libby & Fox (1963)). Therefore, the coefficient
B1(µ) remains undetermined in the large-w analysis. In § 5, B1(µ) is determined by
comparing the large-w asymptotic expression for the wall shear with results obtained
by numerical integration of the mean flow equations starting from the stagnation
point w = 0.

The ordinary differential equation governing p3 is inhomogeneous, so that a
particular solution is required. The need for numerical solution for each value of
µ can be avoided by noting the form of the dependence on µ of the inhomogeneous
term d3. Similar remarks apply for p4 and p5. Thus we set

p3 = B1(ηF ′−F ) + p̄3 + µ2p̃3, p4 = µA1p̄4, p5 = µ[B1p̄4 + p̄5]+µ3p̃5, (A 6)

where the functions p̄3, p̃3, p̄4, p̄5 and p̃5 satisfy third-order ordinary differential
equations which are independent of µ. Since L3 admits an eigensolution, we ensure
uniqueness of p̄3 and p̃3 by enforcing the additional conditions p̄′′

3(0) = p̃′′
3 (0) = 0. The

solutions for p̄3, p̃3, p̄4, p̄5 and p̃5 are obtained by numerical integration, with p̄′′
4(0),

p̄′′
5(0) and p̃′′

5 (0) determined by shooting.
Finally, the wall shear, U ′

0(w) ≡ φηη(w, 0), which appears in (3.13) has the asymptotic
expansion

U ′
0(w) = F ′′

0

(
1 + µ

ı̄0

w
+ A1

log w2

w2
+

B1

w2
+ µA1j̄ 0

log w2

w3

+ µ
B1j̄ 0 + k̄0 + µ2 l̄0

w3
+ O(w−γ2 )

)
, (A 7)
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where the numerical constants are calculated to be

ı̄0 = −3.591, j̄ 0 = 0.814, k̄0 = 8.230, l̄0 = −3.235. (A 8)

Appendix B. Asymptotic form of disturbance far downstream
In this Appendix, we develop expressions for the large-ξ asymptotic eigenfunctions

of the LUBLE. For algebraic simplicity, the analysis is carried out in terms of large
w (see (3.3)) with S assumed of O(1). Guided by the flat-plate results of Ackerburg &
Phillips (1972), we anticipate that the asymptotic eigensolutions have a two-layer
structure, with an inner layer of thickness η = O(S−1/2w−1), and a main layer of the
same thickness as the mean boundary layer, η = O(1).

B.1. Inner layer

Introducing an inner variable m = S1/2wη, the homogenous form of the LUBLE
becomes

ψmmm + i

(
1 − 2µ

w
+

1 + µ2

w2

)
ψm − mF ′′

0

2S3/2w3
(mψmm − 2ψm) + o(w−3)

=
U ′

0(w)

S3/2w2
(mψmw − ψw) +

mU ′′
0 (w)

2S2w3
(mψmw − 2ψw) − m3F ′′

0
2

24S3w5
(mψmw − 4ψw), (B 1)

where U ′
0(w) is given by (A 7) and U ′′

0 (w) = −β(w) is given by (3.11). The regular
perturbation solution to (B 1), for large w, leads to solutions related to the particular
solution ψp . Thus, the asymptotic eigensolutions must arise as a balance between
the highest m-derivative and the terms involving w-derivatives. It is then clear that
the eigensolution must contain a factor exp(T (w)) and it is for this reason that the
higher-order terms containing streamwise derivatives have been retained in (B 1).

The subsequent analysis is simplified somewhat by absorbing some of the effects of
geometry and aerodynamic loading into a new inner variable,

M =
(
1 − µw−1 + 1

2
w−2 + 1

2
µw−3

)
m. (B 2)

Next, setting

ψ(w, M) = exp (T (w)) θ(w, M) (B 3)

in (B 1) and rearranging in order to separate the functions T and θ , we obtain an
expression for the derivative of T ,

dT

dw
= −λ

S3/2

U ′
0(w)

w2
(
1 − µw−1 + 1

2
w−2 + 1

2
µw−3

)3
, (B 4)

and a differential equation for the mode-shape function,

θMMM + iθM + λ(MθM − θ) = w−2R̄2 + w−3R̄3 + o(w−3), (B 5)

where λ is the ‘separation constant’ and the remainder terms on the right-hand side
of (B 5) are given by

R̄2 = − λµ

2F ′′
0 S1/2

M(MθM − 2θ)

R̄3 =
F ′′

0

S3/2

(
1
2
M(MθMM − 2θM ) + w(MθMw − θw) − 1

24
λM3(MθM − 4θ)

+
λ[1 − µ2(2 − ı̄0)]

2F ′′
0

2
SM(MθM − 2θ)

)
.


(B 6)
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The mode-shape function satisfies homogeneous boundary conditions at the wall,

θ = θM = 0 at M = 0, (B 7)

while matching to the main layer requires suppression of any terms exhibiting
exponential growth as M → ∞.

If the small remainder terms on the right-hand side of (B 5) were not present, (B 5)
and (B 7) would define an eigenvalue problem for the mode-shape function θ(M) and
the eigenvalue λ. Due to the presence of the remainder terms, the eigenvalue λ exhibits
a slow dependence on w for w � 1, and the mode-shape function also exhibits a slow
dependence on w. Thus we set

λ = λ0 + λ2w
−2 + λ3w

−3 + o(w−3), (B 8)

θ(w, M) = θ0(M) + θ2(M)w−2 + θ3(M)w−3 + o(w−3). (B 9)

Substituting these expansions into (B 5) and (B 7), the leading-order terms produce
an eigenvalue problem involving θ0(M) and λ0, while higher-order terms provide the
equations governing θj (M) and λj , j = 2, 3, . . . .

The analysis is simplified by differentiating (B 5) once with respect to M , then
introducing a new independent variable

z = (−iλ0M + 1)z0 where z3
0λ

2
0 = i, (B 10)

and changing the dependent variable to

fj =
d2θj

dz2
, j = 0, 2, 3, . . . . (B 11)

The governing equations at leading order then take the form

f ′′
0 (z) − zf0(z) = 0, f ′

0(z0) = 0, (B 12)

where the boundary condition at the wall z = z0 follows from (B 5) and (B 7), and
exponential growth of f0(z) as z → ∞ must be suppressed. The solution is

f0(z) = DAi(z), λ0 = ρ−3/2e−iπ/4, z0 = −ρ, (B 13)

where D is an arbitrary constant and ρ = ρi is one of the infinite sequence of positive
roots of Ai′(−ρ) = 0. The first eigenfunction, corresponding to ρ = ρ1, matches onto
the TS wave of the Orr–Sommerfeld region where S1/2w = O(ε−1). For convenience,
the subscript ‘i’ denoting the mode index of the asymptotic eigensolution is not
displayed explicitly in the remainder of this Appendix.

The equations for the higher-order corrections to the mode-shape function now
take the form

f ′′
j (z) − zfj (z) = DGj (z), j = 2, 3, . . . , (B 14)

where

G2(z) =
e−iπ/4ρ1/2µ

F ′′
0 S1/2

[
I1(z) − 1

2
(z − z0)

2Ai(z)
]

− λ2e
iπ/4ρ3/2(z − z0)Ai(z),

G3(z) =
e−i3π/4F ′′

0 ρ3/2

S3/2

[
I0(z) − 1

2
(z − z0)

2[Ai′(z) + I1(z)] + 1
24

(z − z0)
4Ai(z)

]
− e−iπ/4ρ1/2

F ′′
0 S1/2

[1 − µ2(2 − ı̄0)]
[
I1(z) − 1

2
(z − z0)

2Ai(z)
]

− λ3e
iπ/4ρ3/2(z − z0)Ai(z),


(B 15)
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with Ij (z) =
∫ z

z0
(z − z′)jAi(z′) dz′. The functions f2(z) and f3(z) satisfy the same

boundary conditions as f0(z). Thus, in order for the solutions f2(z) and f3(z) to
exist, the solvability conditions

∫ ∞
z0

Ai(z)Gj (z) dz = 0, j = 2, 3 must be satisfied. These
lead to

λ2 =
iµ

2F ′′
0 S1/2ρ

J2 − 2Ai2(z0)

J1

=
iµ[8ρ3 − 27]

20F ′′
0 S1/2ρ3

, (B 16)

λ3 = −2F ′′
0

S3/2

(
τ (0) + iSτ (1)[1 − µ2(2 − ı̄0)]

)
, (B 17)

where

τ (0) =

[
1

48

J4

J1

− 3

4

]
=

16ρ3 − 889

1260
, τ (1) =

[2Ai2(z0) − J2]

4F ′′
0

2
ρJ1

=
8ρ3 − 27

40F ′′
0

2
ρ3

. (B 18)

Here Jj =
∫ ∞

z0
[z − z0]

jAi2(z) dz; recursion relationships for these quantities are given
in the Appendix of HK1.

With λ determined, we now integrate (B 4) to obtain the exponent T (w), which we
write in the form

T (w) = T (0)(w) + 2τ log w + T (1)(w), (B 19)

where

τ = τ (0) + iSτ (1)[1 + µ2(2ı̄0 + 1)], (B 20)

T (0) =
ei3π/4S3/2

F ′′
0 ρ3/2

[
1
3
w3 + a1w

2 + a2w log w + a3w + a4 log2 w + a5 log w
]
, (B 21)

T (1) = b1w
−0.774 + w−1(b2 log2 w + b3 log w + b4) + o(w−1). (B 22)

For large w, the terms in T (0) are large and hence must be included in the leading-
order form of the eigensolution ψ . The term involving τ provides the O(1) algebraic
dependence of ψ on w. The terms in T (1) are small for w � 1; thus exp(T (1)) could
be expressed as higher-order corrections to the algebraic dependence of ψ on w. In
principle, the coefficients bj could be determined by retaining higher-order terms in
the asymptotic expansions, though this is unnecessary for present purposes.

The large number of terms retained in the various asymptotic expansions were
required in order to determine the coefficients aj ,

a1 = − 1
2
µ(̄ı0 + 3),

a2 = −2A1,

a3 = 3
2

+ 2A1 − B1 + µ2
(
ı̄2
0 + 3ı̄0 + 3

)
− 2µρ3/2S−1/2F ′′

0 τ (1)e−iπ/4,

a4 =A1µ(2ı̄0 − h̄0 + 3),

a5 = −µ3
(
ı̄3
0 + 3ı̄2

0 + 3ı̄0 + 1 + k̄0

)
+ µ

[
B1(3 + 2ı̄0 − h̄0) − 3

2
(1 + ı̄0) − j̄ 0

]
.


(B 23)

Note that for µ > 0, a1 is positive and so at leading order, the disturbances decay
faster on the upper surface than for the flat-plate case.

Returning to (B 11) and (B 13), the leading-order mode shape can be obtained by
integrating twice to give

θ0(M) = F ′′
0

(
S

2

)τ

∫ M

0

(M − M̃)Ai
(
eiπ/4ρ−1/2M̃ − ρ

)
dM̃∫ ∞

0

Ai
(
eiπ/4ρ−1/2M̃ − ρ

)
dM̃

, (B 24)
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where the arbitrary constant D that multiplies the asymptotic eigenfunction has
been chosen so that in the limiting case µ → 0 it agrees with the result for the
zero-angle-of-attack case of HK1.

B.2. Main layer and matching

Turning now to the main layer, where η = O(1), we write the asymptotic eigenfunction
in the form

ψ = w2τ+1 exp
(
T (0)(w) + T (1)(w)

)
g(w, η). (B 25)

The governing equation becomes

φηgη − φηηg =
e−iπ/4F ′′

0 ρ3/2

S1/2w
gη + O(w−2). (B 26)

Thus

g = A(w)

[
φη − e−iπ/4F ′′

0 ρ3/2

S1/2w
+ O(w−2)

]
(B 27)

where A(w) is determined by matching to the inner layer. This is completed most
easily by matching ψη, to give

A(w) = S1/2

(
S

2

)τ (
1 − µ(1 + ı̄0)

w
+ O(w−2)

)
. (B 28)
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